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1. Introduction

Covariance functions for the gravity field form the basis for optimal

gravity field approximation techniques such as collocation and Wiener filtering,

and arealso indispensable for error studies and similar topics relating to inte-

gral formulas etc. Considering collocation, it is generally stated that the

result of application of collocation techniques is insensitive to the actual

h• choice of covariance function parameters, whereas the error estimates are critically

dependent on these parameters. This is a somewhat dangerous statement: experience

has shown it indeed to be the case for e.g. gravity interpolation, but when

predicting a different "order" of gravity field quantities, e.g. geoid undulations

from gravity, it is definitely not the case: the predicted geoid may be too

rough or too smooth depending on whether the implied covariance model has too

much or too little power in the longer wavelengths.

There is therefore a definite need for "good" covariance models, i.e. parametrical

models giving a good fit to empirical data from a given area. Many "simple"

models for parametric covariance functions have been suggested and evaluated

over the years; for a review see e.g. Moritz (1980). Possible misfits of the ..-

"simple" models may be reduced by "multiple" models, as e.g. suggested by Jekeli
(1978), Jordan (1978) and many others. These simple and improved covariance

models may be interpreted in terms of statistical properties of the density

anomalies generating the anomalous gravity field. In the author's opinion, such

interpretation models, outlined in the sequel, will principally be of value

in clarifying the relationship between the various types of simple covariance

models in use, and for providing geophysically reasonable improved covariance .-

function models.

Another - and very important application - is the use of "covariance inter-

pretation" as a geophysical exploration method, to obtain depths to density anom-

alies. Such statistical methods have been dominating in potential field geophysics

for the last decade or so, and have been applied successfully and routinely

for aeromagnetic data. For gravity, however, the successes have been more limited,

reflecting partly the usually much less dense gravity coverage available and

-especially - that the sources of the gravity field variations are more "spread

out" and less applicable for the "white noise layer" descriptions which magnetic

sources often seem to follow, e.g. when unmagnetic sediments are overlying a
crystalline basement.
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*. In the sequel, the relationship between "statistical" density anomaly dis-

tributions and associated covariance functions will be outlined. As a supplemental

remark, the formulation expressing collocation as simple generalized point mass model-

ing will be mentioned, pointing out the simple relationship existing between collo-

cation and geophysical inversion techniques. Through the use of such geophysical-

oriented approaches I think that some of the basics of collocation are "demystified", "

giving e.g. physical significance to such things as the depth to the Bjerhammar

sphere.

In this presentation, I will focus on local covariance functions, applicable

only for a given area or geologic province. Certainly the earth's gravity field
is in no way a stationary process, and local empirical covariance must be used

as a guideline for choosing optimum parametric covariance models (or, rather,

the "best" Hilbert space kernels) for such an area. For local applications, global

information available through spherical harmonic expansions should always be utilized

by subtracting such a reference field. The remaining "residual" field will have

less variance and shorter correlation length, and especially when using the available
high degree-and-order expansions complete to degree 180(e.g. "Rapp-180", Rapp

1981) the "variations" will be so local, that the flat-earth approximation becomes

completely justifiable.

This planar approximation will be the object for the present work. To exag-gerate: by the excellent spherical harmonic models now available, only local

problems remain in physical geodesy! And locally everybody knows the earth is flat.

In the planar approximation, the discrete spherical harmonic spectrum will be
replaced by the continuous Fourier spectrum. Although no simple transition exists

between these spectra, a remarkably simple and accurate transition exists between

the power spectrum and the degree-variances. This simple relationship will be
treated in some detail in the next section. Due to this simple relationship, re-

suits for the planar approximation given in the sequel are more or less directly

transferrable to a spherical earth.

At the end of the report, some results for actual data in the U.S. will be

used as illustrations, to show some of the applications and limitations of the

simple covarlance models and implied density anomaly distributions,and to compare

the "local" results to conventional global covarlance functions.

.. . . ... ."- ..- "". . .."" "-"'"" . .-"".- .. * -.--"" " -,- .-' ,.. .""""*"*,. ",' ...*.:; ::'.'-.::: ::).
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2. Spectral Analysis of Covariance Functions

The anomalous potential of the earth defined as the difference between the

actual geopotential W and a normal "ellipsoidal" potential U, may be expanded

in fully normalized spherical harmonics as

m Ftm(sin o) cos mx
T(r, x) R= x 1 x) 7, ( x) : (m>) (2.1)

9 ,= 2 m = -z t: ;- rt..
P (sin )sin mx

(m O)

The function T will be harmonic (V2T=O) outside a sphere of radius R, usually

taken as a mean earth radius in available solutions. The spherical harmonic

"power spectrum" is the well-known degree-variances

i2

(2.2)

If the covariance function K of T is assumed to be isotropic,K(P,Q)=K(,rp, rQ),
we have the following well-known expression for the spatial covariances

K(P, Q) = 2 + P (cos f) (2.3)

see e.g. Moritz (1980). On the reference sphere, K and a are thus related by

a Legendre transform, and

-Z f K(p) P (cos ) sinPOd (2.4)

PP-

Figure 1
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The terms K and relate to the anomalous potential T, and thus by division

with normal gravity y to the height anomaly (spatial geold undulation) c

(r.,,) _ (2.5)
,.;,•.

For gravity anomalies

-.aT 2
Ag -T LAg(T) (2.6)

similarly C and c are traditionally used for covariance function and degree-

variances respectively.

C may be expressed by K using covariance propagation:

(P) (Q)
C(P, Q) Lg L K(, ) (2.7)

ag

where the dots indicate that the gravity anomaly operators L., should be applied

each to one of the variables in K(P, Q). In the spectral domain, the eigenvalue

of operator (2.6) is well known to be (Heiskanen and Moritz, 1967, p. 97),R
i.e. for the spherical harmonic coefficients

Ag. . (2.8)m Tm

and thus

ct " (t-1 (2.9) ' :

2.1 The Planar Approximation

The previous topics .should be familiar to most geodesists. Less familiar

is often the use of Fourier transformations. The Fourier techniques have as

advantages their mathematical simplicity, and for practical applications, the

efficient transformations algorithms available thorugh FFT - Fast Fourier Transform.

% .V.* .
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The drawback is that they can only be used local!y, since the flat-earth approxi-

mation forms the basis. However, with the available high-degree and order spherical
harmonic expansions of the geopotential complete to degree 180, (e.g. Rapp, 1981),

the residual field

T'= T - TIS0X180 (2.10)

may be very suitable for flat-earth methods: T' will have a covariance function

of short correlation length (typically 30-50 km), much smaller than distances

in which earth curvature effects need be taken into account.

In the flat-earth planar approximation the reference sphere will be replaced

by a tangential plane H. An XYZ-system will be used in N, with X positive east,

Y positive north and Z positive upwards (Figure 1). The Fourier transformation

pair is defined through

T(u, v, z) f T(x, y, z)e i(ux+vY)dxdy

(2.11)

: i fT~u, , z~i(Ux+vY)duv"".".T(x, y, z) (u vz d

where the spatial frequencies or wave numbers will be termed (u, v) in this report,

in accordance with the notation of Papoulis (1968). The spectra at various alti-

tudes z are related through

T(u, v, z) T(u, v)e VU /+v (2.12)

where T(u, v) is the spectrum at zhe reference plane 7 and the so-called radial

wave number.

Spectra of other gravity field quantities are easily found from their "defining"

.. operators e.g.

7777

;.... . . . . . .
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=a T 2T T -w
oGravity anomalies Ag _r 2T: A ( -; (2.13)

ar r r

oN-S deflections _ .y1 T" - i (2.14) 
yR ao* y

" I @T1 3T _iu} 21)"
oE-W deflections n T coRU (2.15)

The second term in (2.13) - the "indirect" effect - may often be neglected when

using a 180x18O reference field: typical errors for the reference field are at

most a few meters in C, corresponding to a residual indirect effect of a fraction

of a mgal. In this case, an important relationship between the variances of de-

"* flections and gravity may be derived. For an arbitrary function f Parsevals equation
says -

f f2 (x, y) dxdy = 4xyf f2 (u, v) dudv (2.16)

In terms of variance, we have for centered quantities

-" = E{r E{_ = 1 w2 E{} (2.17)

.+ - E{ 2  41 - ET 2} (2.18)

i item frmandii

For an isotropic field a2=a 2  and thus 2=2y1 a2 in terms of r.m.s. variationn' 2y _'

corresponding to c. 6.7 mgal/arcsec.

2.2 Hankel Transforms

When Fourier analyzing radially symmetric functions, so-called Hankel transforms

* are obtained.

Let f(s) = f(x, y), s = Vxr+y be a radially symmetric function in I. Then

the Hankel transform pair is (Papoulis, 1968):

.- ,-.77
. . . .. . . . . . . . . . . . . ..°. .c * * .
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T = f sf(s)J 0(ws)ds (2.19) .

0

f(s) fT(W)J (ws)dw (2.20)

where J0(') is the Bessel function of order zero, the Hankel transform and the

Fourier transform of f being essentially equivalent since

f(u, v) 2irT(), W /u + (2.21)

To give two important examples of Hankel transforms, consider the reciprocal dis-

tance function (x2+y2+z2)- . The transform pairsr
tanc 1un1ion-wZ

_eZ (2.22)

1 ,-, 1 e-wZ
e_ (2.23)

F7--.

may e.g. be found in (Papoulis, 1968, p. 145).

For practical computations, efficient numerical algorithms ("Fast Hankel

Transform")exist , building on completely different principles than the FFT-

algorithm (Johansen and S~rensen, 1979).

2.3 Covariance Function and Power Spectrum

In the planar approximation the spatial covariance function K becomes a function

defined in the space above the reference plane II:

K(,, rp, r K(s, z,, z2 ) (2.24) -

where s-R is the distance in the plane. Consider for a moment the covariance

function at the reference level rprp = R, Zp=ZnQO. The discrete degree-variance

spectrum (2.2) will in the planar case be replaced by a continuous function -

the power spectrum (or rather power spectral density - psd)

0 iz
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,TT(u, v) * E{T(u, v)2} * k(u, v) (2.25)

The power spectrum and covariance function are thus related through a Hankel trans-

form when the covariance function is assumed to be isotropic

-TT(w) 2"(s 2rKT Y (2.26)

Spatial covariance expressions, corresponding to (2.3), may be obtained using

the upward continuation operator e"4' twice:

1 -(zP+ZQ)

K(s, zp, ZQ) = - 0 f' wTT(w)e J Sw)dw (2.27)

see e.g. Nash and Jordan (1978).

2.4 Relationship Between Degree-Variances and the Power Spectrum

A unique and simple relationship exists between the spherical harmonic degree-

variances and the flat-earth power spectrum. This relationship, which says that

the degree-variances and the power spectrum are more or less the same, have been

given e.g. by Dorman and Lewis (1970), in a form slightly different than the one

given below.

Consider a local covariance function K(s), where s is the distance. The

power spectrum is

TT()= 24(s) = 2 sK(s)J(ws)ds (2.28)
0 0

while the corresponding degree-variances are by (2.4)

21 K(*R) P z(cos *slnqd. (2.29)

*..._.
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where the covariance function is now viewed as a function of s rather than ,

However, for a local covariance function, obtained e.g. when a reference field

has been subtracted, the function K(oR) will be virtually zero for large distances.

We may therefore approximate sin 1, and obtain

:2Jz+1=P± f ' K(,R) P (cos 4)do (2.30)

- 2 0

The function K has here formally been extended to infinity. Now (2.30) is trans-

formed using the asymptotic expansion of Legendre functions in terms of Bessel

functions (Gradstein and Ryshik, 1965, 8.722)

- (cos ,) = Jo((2t+1) sin 2) + 0( ,2 ) Oo itP) (2.31)

This approximation is valid with high accuracy, even for relatively low degrees

and large distances. For example t=10, 0=8.1 ° we have

Pz(cos ) 0.5201

(a+ = 0. 5196

giving only a relative error of 1%.

By insertion of (2.31) into (2.30) then

! , 2 fl K( oR)Jo(2+ f)od (2.32)
2 02

2i 1 oK(s)J( - s)sds (2.33)

=W ( ' )TT (J+ T (2.34)

Thus, the degree-variances are obtained essentially simply by multiplying the

power spectrum by L, at the "natural" wave numbers w - t".

S.'
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Therefore, results derived in the sequel for the power spectra of various

density distributions and masses may be directly transformed into "spherical"

results, especially since the emphasis here is on local phenomena. As seen from

the numerical example, the derived degree-variances may be sufficiently accurate
even as far down as 1=10.

-, .. -o

3. The Relationship Between Covariance Functions and Nass Distributions
The anomalous gravity field is generated by variations in the density dis-

tribution inside the earth. Formally, we may write T as an integral over the

earth

T- G I da: (3.1)

where r is the distance, G the gravitation constant and ap the density anomaly, i.e.

Ap P- P0  (3.2)

where p is the actual density and p0 a normal density distribution, generating

the normal potential. Opposed to p, ap may naturally attain both positive and

negative values. When a reference field is utilized, the density anomalies may

be viewed as being relative to a reference density distribution, generating the

reference field. The reference distribution need usually not be given explicitly,

it suffices simply to view it as the expected "normal" structure of the earth's

interior. For more details, see e.g. Forsberg (1984).

In the sequel, the discussion of density distributions etc. should thus be

understood in terms of density anomalies rather than just physical densities.

* 3.1 Deterministic Power Spectra of Elementary Masses

Power spectra of simple anomalous density bodies have widespread use in geo-

physical interpretation and also play a role in understanding the different types

of covarlance functions frequently used in geodesy. Consider first a point mass,

or - equivalently - a sphere of constant density. The gravity effect in P for a

sphere of mass m will be (cf. Figure 2)

-: 1-..
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g Gm-h (3.1)

POINT mAss

3S
and thus by (2.23)

D 
r

I?)~NO 2wrGie 0  (3.2)

VERTICAL DIPOLE
________________For the gravity and potential power spectra thus

4 *ggW) !(W)f 2 (2IGm)2e-2wD e2wD (3

() 1 41() 1 e-2wD (3.4)TT(W W gg. 0 WT-
VERTICAL MASS LINC~g

o where ""is used also for "proportional to".
top For the vertical dipole of moment M we have

by well-known potential theory

r r Ga Dj (3.5)

Figure 2

and again for the spectrum

1(w) =2iGeW (3.6)

In this case the power spectra have more power at higher wave numbers:

0gb W2e-2wD (3.7)

* TT e-~ (3.8) .
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The vertical mass line has less power at higher wave numbers. We have

g KGic fZ dz G 1i.- (3.9)
rtop

where K is the line mass density. Thus

I -2w0 (3.10)
Ogg -- e (3.10)

1 -2w0 (3.11)

TT C w.e

Conventionally in potential field analysis

(gravity and magnetics), power spectra are

LOG ( plotted (single) logarithmic. In this case

(da) oss lihe the point mass power spectrum will be a straight

p m line, the slope of which is a direct measure

of the depth D (Figure 3). This forms the

base of spectral methods in geophysical inver-

le sion, especially used in magnetics. (In the

wj magnetic case, gravity results may be transfer-
red by using Poissons formula for the magnetic

Figure 3 potential: UL-i. VT, where i is the magnetization

vector of the body in question. This implies

e.g. that the gravity point mass spectrum corresponds to a magnetic vertical dipole

line).

It is of interest also to consider the change in shape of the power spectra

when the dimensions of the "anomalous body" are not negligible. To include "width"

and "thickness" of the body, consider a cylinder

of constant density p, diameter 2a and thickness
V£RTICAL CY'LINER T (Figure 4). The gravity effect is one of

.. the less trivial geophysical elementary bodies

(the "volcanic plug"). Using (3.9) the attrac-

tion at P may be written

Figure 4

% %°% 
.
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a
g(s) f 1 )2ra da (3.12)

0 rt r b

r= (s - a') 2 + D2 ,  r= (s a') 2 + (D + T)2
t bP

To get the spectrum, (3.12) is inserted into the Hankel transform integral (2.19):

(w) =2r(w) 4 2Go (o f t r a'da'J (ws)sds (3.13)
0 0t b

which by interchange of integration order and some evaluations results in (Petersen,

1978)

g~)= 2 Gm •e " D l~e'T _____,_

2'd aw 'm ffa2T (3.14)

This is seen to be the point mass spectrum (3.2) multiplied by a thickness and

a width factor (J1 is the Bessel function of the order 1). These factors are

shown in Figure 5 for unit radius and thickness. The factorization is typical

for the spectra of "simple" bodies. A

similar formula is obtained e.g. for the

1. rectangular prism, see e.g. Forsberg (1984).
width

Due to the factorization, the power spec-

.5. trum becomes equally simple:
llhicness

0 2 (w ) - - 2(D , )-e 
-2 T  2 i°(aw )°2

8 10 gg )T -- aw

Figure 5 When T << D and a << D, the factors may be

neglected, or, in other words, the point mass approximation is adequate.

3.2 Statistical Mass Distributions

The spectra of the "simple" bodies of the last section are encountered also
when considering independent statistical ensembles of the same bodies. This is

due to a fundamental theorem of statistical mechanics, stating that the mathematical

..- 2'-
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expectation of the "total" power spectrum equals the ensemble average of the "indi-

vidual" power spectra.

Assume

0 (W 0 (w, Pt..Ik)(3.16)

is the power spectrum of an individual body, characterized by parameters pi, ..., Pk

describing e.g. depth, width, density etc. (radial symmetry has, for simplicity,

been assumed). The distribution of the bodies is described by an ensemble joint .* m.
frequency distribution f(pl, ... P). Then the total power spectrum 0 will be

the ensemble average of *P: I

P p
0(w) E{0 (w)} = ... f 0 w$ Pi ' ... f(P " '" ' Pk) dpi dPk

di (3.17)PI Pk

(Spector and Grant, 1970).

If the parameters are assumed to vary independently, then the joint frequency

distribution will be a product f(p, "" P) = f1(P.) fk(Pk). Of special

interest is the case where the parameters are assumed to have a white noise dis-
P

tribution. In this case 0(w) = (w), and we have immnediately the following spectra
for a "random" layer at depth 0:

White noise density layer: gg0 ) - e 2wD (3.18)

2 gg-2'

White noise "mass lines": () -1 e- (3.20)
gg

The white noise density layer may be interpreted physically as random undulations

in the depth of the interface between two layers of constant density, e.g. a sedi-

ment/basement interface.

-~ * *er*:,~ ~ ..... . *.o..,.,.

S.* * .Q* ,**.* ~ .



For an example with two parameters, consider an
.......... .... ,...ll

D earth model of point masses of white-noise random

mass and random depth below a layer at D (Figure 6).

.. .. For this "all white" assemblage of mass points

(w -2DIW e-w (3.21)
Figure 6 0g(w) - f e 2wD'dD' - . e-"D

and similarly for an "all-white" dipole distribution

Mgg(ii) - (3.22)

This may be generalized to the so-called stationary thin layered earth model,

where the density anomaly distribution is assumed to be described by a covariance

function and thus power spectrum o If the earth is assumed to consist of a

numbc., of thin layers (e.g. a sedimentary sequence), then each layer will yield

a partial power spectrum of form

Wgg(W) (2iG~z)2 *pp(w, d)e2wd (3.23)

where d is the depth and Az the thickness.

If the layers are similar and independent, the total power spectrum thus

will be

g() ( e-2wD (3.24)

yielding an example of a one-to-one relationship between gravity and density co-

variance functions.

The above examples all have in common the factor e containing the depth

information. This factor is the prime "objective" of the widespread statistical

inversion techniques of geophysical inversion applied successfully for more than

a decade, especially for aeromagnetic data. In the method, depths to the top

.%

ri .. .. . .. . .......... . . .. . , , .- . . . . .. .... ., , , , ,, ::**=.". *
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and base of magnetized layers may be found (at times also width parameters are

solved for), using the shape of the power spectrum, computed for a given area.

Layers at various depth's typically show up as more or less straight line segments

in the power spectrum, when plotted logarithmic, and depths are derived from the

slope values. Examples may be found e.g. in Spector and Grant (1970).

-.". -'

An impressive example of a two-layer magnetic problem may be seen in the

global degree variances of the magnetic field (Figure 7). The field from the

earth's core is seen to dominate up to t;13, after which the "shallow" crustal

field takes over. The core radius inferred from the slope of the low degree

variances, yields a value only a few hundred kilometers deeper than the seis-

mically determined value (3485 kin).

LOGE

80 "

do. core

40-

\

20- ' Crust
-- t%*~i a!.- Figure 7 Degree-variances

for the earth's magnetic field. S
01 MAGSAT solution, complete

S o 10 I 20 25 (to degree and order 23 (after
Langel)

While the statistical approaches have proved very successful for magnetic

data, they have been less applicable to gravity interpretation. This is partly

due to the (usually) less dense gravity coverage, and, especially, to the dif-

ferent nature of the sources: density anomaly variations tend to be more "spread

out" and less random than changes in magnetization and susceptibility. The

...'..'.','.

- . :,.-., .
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typical "clear-cut" geophysical problem of unmagnetic sediments overlying a highly

magnetized methamorphic basement has e.g. usually a much less clear gravity paral-

lel. intra-sedimentary density anomalies being most often non-negligible.

However, the value of the statistical interpretation for gravity is yet high:

it provides an efficient means for a deeper understanding of covariance functions,

as outlined in the sequel.

3.3. Relationship to Traditional Covariance Functions

Most frequently simple, analytical covariance functions have been used for

e.g. gravity field modelling by collocation. These functions are characterized

by a few "free" parameters, which may be adjusted to fit the "essential" parameters

of a local covariance function, such as (gravity) variance Co, correlation length

x and horizontal gravity gradient variance Go, for a discussion see Moritz (1980,

ch. 22).

For the planar case many different types of analytical covariance functions

have been suggested: e.g. exponential, Gaussian and especially models of form

CO
C(s) = -° (3.25)

(1+(s/D')2)M

where D' and m are constants. However, of these simple models, only two allow

the derived spatial covariances C(s, z1 , z2) to have correspondingly simple ex-

pressions: namely (3.25) for m=1/2 and m=3/2, see again Moritz (1980). The co-

variance functions

C(s) = (3.26)

and

. ~CO  -.

C(s) ( )(3.27)

(1.+..

have been termed the reciprocal distance and the Poisson covariance functions

respectively. The associated power spectra follow from (2.22) and (2.23):

:-.." .- '.-.
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Reciprocal distance: g = 2CoD'h lewD (3.28)

Poisson: 2wCD'Ze
"WD '  (3.29)Poi sson: gg 4

Thus, by (3.22) the reciprocal distance covariance function may be interpreted

as generated by an "all-white" assemblage of mass points from depth D= D', or

in other words - a stationary, thin-layered earth with a white noise density anomaly P

distribution below depth D. The Poisson covariance function may similarly be in-

terpreted as associated with a white noise density layer at depth D=D'.

For spherical covariance models a number of expressions have been used or

suggested. Generally, the covariance models have been obtained from selected

models of the degree-variances, where the spatial covariances may be evaluated

by analytical expressions.

At sea level the general expression for the potential covariance function

may be written

.R 2 +1.-
K( = . (- P,(cos q') (3.30)

z=2 RL

where Rb is the radius of the Bjerhammar sphere and R >Rb an earth radius. The

depth to the Bjerhammar sphere is directly related to the depth parameter D of

the planar covariance functions: When R-Rb<<R then

z+_ exp(2(R+) RgwD -+1
R2 ((kI log( )) e ! w- - D =R-Rb (3.31)

R Rb

Thus for large ., the asymptotic degree variances for the reciprocal distance

and Poisson covariance functions must be of the form

1 R2
Reciprocal distance: a 7 o (3.32)

Poisson: (333
t L::::

IL " f-

, 7.-o



-19-

This follows directly from the relationship (2.34) between the power spectrum

and the degree variances. Closed formulas for the spherical reciprocal distance

and Poisson covariance functions are found in Moritz (1980, ch. 23).

An important additional class of degree-variance models is the

1 s+i (3.34)

Logarithmic: a~ ~

The earth's gravity field is known to adhere to such a power law on a global scale.

Well known empirical logarithmic models are "Kaula's Rule"

a 3 0.7 - 2t1 (3.35)

(see e.g. Phillips and Lambeck, 1980) and the "Tscherning-Rapo" model

a 4.4 10 1.96 (.6
oS = 4.4 • (z-1)(x-2)(x+24) "99962'+ (3.36)

(Tscherning and Rapp, 1974), which corresponds to a Bjerhammar sphere depth of

1.2 km. From (3.34) follows that the asymptotic form of the logarithmic power

spectrum is

gg(w) 1 -2wD (3.37)

which is seen to be the "white mass lines" power spectrum. A more reasonable

physical model is obtained by the stationary, thin-earth assumption: then from

(3.24) the density spectrum must be of the form

S1 (3.38)

which is a plausible "red noise" spectrum with high power in the low wave numbers.

However, such a noise model globally implies stresses in the interior of the earth . .

that are bigger than the stress which e.g. the mantle is currently thought to
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be able to sustain: therefore "multilayer" models are more adequate for obtaining

. realistic statistical density models. Naturally such models in addition may provide

a better fit to empirical data, since more free parameters will be available to

* "tune" the covariance model.

Heller's attenuated white noise (AWN) model is an example of this kind.

In the AWN model the global degree-variances are modelled using 5 density shells

at various depths, where the potential originating from each shell is assumed

to be white noise at the shelf itself, i.e.

5
S ai(2+l) (3.39)

where a. and D. are constants (Jordan, 1978). For each shell, the associated

planar power spectrum will be of form

0gg w 2 e2wDi (3.40)

and thus the AWN-model may be interpreted as a white noise dipole layer model.

The various simple covariance models are listed in Table 1, showing the un-

normalized forms of the gravity power spectrum gg (w), covariance function C(s)

and degree-variances O using (2.34)

Table 1

Density Model gW) C(s) Asymtotic a2, Covariance type
________ (Moritz)

1 -2wD 1white mass lines -e e "logarithmic"

-2wD11- "all-white" masses r e cii
r . reciprocaldistance"

white mass layer e" 2wD D' 1 "Poisson"

"all-white" dipoles we2D 3D'2  const.
r "r

white dipole layer w2e2- wD 15D'3 3D' "AWN"r7- r-r

Note: D' = 2D, r =V--s "

B:............................. ... ........ %...- .- ",. . ,"-... :
ll ."-. -. -. . . ,, -" ."%"""L.

' 
".*-. . . ,, ". . • ' " " ,,° .° .' .% " ,,' . .", -.' .".- , .-p • . ."."- . "._. . "..-. " - ... ., .- . ,- .,

... v"'.



-21-

The covariance function expressions have been given by (3.26) and (3.27)

for the "reciprocal distance" and "Poisson", respectively. The remaining co-

variance functions have been derived utilizing the relationships

dS gg --- differentiation

g -- integration after D'

between frequency domain and space domain. Thus, C(s) one step downwards in the

table is obtained by differentiation, C(s) one step upwards is obtained by inte-

gration.

Correspondingly, since for the potential power spectrum

OTT(W) 1 0() (3.41)

the form of the potential covariance function K(s) may be found going two steps

up in the table, and similarly second-order gradient covariances may be found

going two steps down.

When going "upwards" in the table, the covariance function C is seen to be

less and less "sharp", and from the "logarithmic" level (and upwards) it will be

singular, going to minus infinity for large r. This singularity is a consequence

of the inadequacy of the planar approximation for low wave numbers . The large
1power at low wave numbers (-7- in the "logarithmic" case) will not be found on

actual power spectra, since the use of a spherical harmonic reference field will

remove the power at the lowest wave numbers. For all the simple power spectra -

of Table 1, such suppression of low wave numbers will result in well-behaved co-

variance functions C. In principle, the necessary suppression of low wave numbers

is corresponding to the omission of the lowest degree-variances (e.g. z=o and 1)

in the spherical covariance expression.

The suppression of the low wave numbers will be treated in more detail later

in this report. First, however, attention will be given to the covariance expres-

sions C(s). Their simple forms allow a straightforward interpretation of collocation

in terms of "generalized point mass" modelling under certain conditions.

%',

J.
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4. Collocation as Generalized Point NMass Modelling

4.1 Covariances as Gravimetric Effects
The covariance expression C(s) of Table 1 may be viewed as gravity effects

for points at the reference level. An example: consider two points P and Q with

distance S. Then the gravity covariance C(P, Q)

for a white noise density layer at depth D
poISo.P ,(the Poisson covariance) corresponds to the

gravity effect in Q from a point mass at depth

2D below P:

----- D "Poisson" C(P, Q) ~ Ag ) (Q)

cf. Figure 8.

rec. dis t. Similarly the "reciprocal distance" covarianceP 0
function ("all white" masses) corresponds to the

mass line effect, while the logarithmic covariance

------ O may be viewed as generated by a rather strange

mass body: a "wedge", i.e. a mass line distribu-

tion with line mass density c increasing linearly

downwards (Figure 8).

Thus, the "successive" covariance functions

of Table 1 are generated by the following "general-

ized point masses":
Iogoritrnic .-:..'

P Q "logarithmic" : mass wedge
• " "rec. dist." : mass line

"Poisson" : point mass

:. --- : dipole

AWN : quadropole

(these "deterministic" mass distributions should,

of course, not be mixed with the statistical

density models of the previous section).

Figure 8

. .. . . . . . . .-
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In fact, any covariance function C(s) may be interpreted as some line mass

effect:

Assume C to be the gravity effect of a mass line below P of line density
K(t), where t=-z is the depth coordinate (Figure 9). Now,

C(s) G dtt (r A +t (4.1)Ir
0

c' Cts) and by taking the Fourier transform and interchanging

, . _P ,. the order of integration

e-td ..
tgg(w) = 2mG f K(t) eOdt (4.2)

Again (2.3) has been used. Thus, the power spectrum
0gg is given as the Laplace transform of K. Conversely,

given C, Kc may be found by an inverse Laplace transform
Figure 9 of the associated power spectrum. Due to the properties

of the Laplace transform, the transition C---c is in

principle unique and exists for all reasonable covariance functions.

The gravimetric interpretation also holds for covariances aloft under certain

conditions. If P is at reference level, but Q at altitude z, then by (2.27):

C(P1 Q) f W W e'ZJ (sw)dw (4.3)S0 gg

By inserting (4.2) and interchanging the order of integration then

C(P, Q) = GfW K(t) f we'(Z (sw)dwdt (4.4)
o t0z)0

f s (tz) (t+z)dt-..._,. = G 0 [S2+(t+z)2]3/ ( .5

which is simply the gravity effect at Q. If both P and Q are at altitude, then

z in (4.5) should be replaced by Zp+ZQ. The "gravity interpretation" of a

covariance function C(s) thus allows an easy extension to the spatial covariance

C(S, Zp. z..).
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4.2 Application to Least Squares Collocation

In the statistical formulation of least squares collocation a signal s is

estimated from a vector of measurements x, the estimate being given by the well- -

known formula -"

CsC-x (4.6)

The cross- and auto-covariances C and C are obtained by covariance propogation

sx .T

{C I L LpK(" ") (4.7)sXI S

{Cx} i L Lp K(., ) (4.8) -

where the signal s=L(T) and observations xi=Lpi(T) are viewed as linear functionals

(the dots in (4.7) and (4.8) indicate that the functionals should be applied on

separate variables of the potential covariance function K(P, Q)).

For practical solutions, i is obtained as a linear combination

1 5Xj :-
.ai{Csxl (4.9) ITTIT
ii .

with coefficients ai given as the solution to the "normal equations"

{CXXj ai  x (4.10)
1 .,

Consider now the simple case of the observations being gravity anomalies

at a set of points Pi. and assume the Poisson covariance function to be used.

Then, with the interpretation of covariances in terms of gravity effects, the e

covariances may, as earlier mentioned, be written as

( C Agi(P) (4.11) A

...-.. ,:..
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where ag represents the gravity effect of a mass point of unit mass, located
below Pi at a depth D' determined by the chosen correlation length xh of the Poisson

covariance function used, i.e. D' : 1.30 x , as may easily be verified.
Then (4.10) may be written as

Ag'(Pp) ai  xj (4.12)

which is nothing but the inversion equation of point mass modelling, with point

masses located below all points P. Thus collocation and point mass modelling

are identical when the Poisson covariance function is used, and signal estimates

(4.9) are simply obtained as the relevant computed gravity field quantity from

the point masses, the mass point below the i'th gravity point having mass a1.

For other types of covariance functions, collocation may similarly be viewed

as generalized point mass modelling, where point masses are then replaced by the

other "elementary" mass bodies (cf. Section 4.1). In e.g. the AWN case, colloca-

tion thus corresponds to solving for a number of quadropole moments while e.g.

the logarithmic covariance functions correspond to "mass wedge" modelling.

The above only hold when exclusively gravity data are used as observations.

For heterogenous data, e.g. a mixture of gravity and geoid observations, the simple

scheme must be modified so that the type of elementary mass model to be used below

an observation point will be dependent on the type of gravity field data given

at the point.

Consider again the Poisson covariance function, and assume a mixture of gravity

and geoid data to be given at the reference plane, e.g. representing available

gravity field data in an oceanic area. Then the covariances in C between gravity

stations are identical to point mass effects. Between points with geoid observa-

tions, the covariances will be (essentially) K(O), which will be of form -log(D'+r),

cf. Table 1, which is the form of the geold effect of the vertical mass line with

top at depth 0'. Similarly, geoid-gravity cross covariances may be interpreted

as the gravity effect of the vertical mass line, or - equivalently - the geoid

effect of the point mass.

In this case thus (4.10) may again be viewed as an inversion equation, where

the unknowns to be solved for will be for

Gravity stations: point mass values

Geoid points : line density values

pl-
dI. "

A . • . ..-. ,-..-..- .,-,'.' ..- ,----". - -.-
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as shown schematically in Figure 10. Other gravity field data types have similar
associated "inversion masses": second-order gradients, e.g. Tz $corresponds to
a dipole point, while deflections of the vertical like gravity corresponds to .

the point mass.

PorSson X GRAVITY

U GEOID

P-'L-T. 4 PS P6
x x U X U x.. , ~~~...... .,. . . ....... ,.., ...........

---

Figure 10 Collocation as generalized point mass modelling. With the Poisson
covariance function ("white noise density at depth "), collocation
corresponds to solving for point masses and line mass densities at
depth 0'=2D, satisfying the given observation data.

The view of collocation as a generalized point mass modelling technique is
of course primarily of interest as a tool for a better clarification of what is
"going on" when using least squares collocation. Naturally, the practical work
remains the same, namely to solve a system of linear equations containing one

equation for each observation point and predict "signals" by summing up the solu-
tion coefficients times the relevant cross-covariances.

While collocation in general may be viewed as generalized point mass model- -1
ing, traditional mass modelling approaches are not necessarily corresponding to
collocation. Only when the number of unknowns equals the number of observations
(and each "mass point" is situated immediately below an observation point) will
the result of point mass modelling be a collocation solution: point mass modelling

of gravity data corresponds to the use of Poisson's covariance function, dipole

.................................. ........... ,. ..... ... . . .. .. . ..*. :::.-
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modelling to the "all-white dipoles" covarlance function (one step down in Table 1)

etc. Since the earth's actual gravity field variations tend to be best described

* by logarithmic covariance functions, "optimum" results should thus be obtained

with some "mass wedge" type inversion.

5. Application of Simle Covariance Models for Local Covariance Functions

After the "side jump" of the last section to collocation, emphasis will now

return to the statistical density distributions and the associated covariance

functions.

5.1 Use of Multi-Layer Models
The simple covariance functions of the previous sections may be used to build

good approximations to empirical covarlance functions through the use of multi-

layer models.

Consider the simple case of a number of white noise density layers, representing

e.g. interfaces at a layered earth model. If the undulations of the interfaces
are assumed statistically independent (like the "thin-layered stationary earth

models"), then the total covariance function will be the sum of the individual

(Poisson) covariance functions

C(s) = s C) , r. (5.1)E- mi ri V" +:::

as illustrated in Figure 11 (mi is the variance of each mass plane density dis-

tribution).

.... ...........
V( C

1'1 ~ sum

sum

S0 2'm2 22

Figure 11 Two-layer stationary density model with associated power spectrum and
covariance function.

• - .. .. °-.
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By adjusting the "free" parameters (D i good approximations to empirical co-

variance funcations may be obtained.*)

The depth and density parameters may be chosen based on geological considera-

tions or - usually more realistic - based on the shape of the computed empirical I..

power spectra. If the gravity field sources at a certain depth range tend to

behave like a white noise layer, then the power spectrum tend to show straight-

line segments at a wavelength band corresponding to the depth range, when plotted

logarithmic. P
An actual data example (Ohio area) is shown in Figure 12. In this example

a reasonably good covariance fit is obtained using a two layer model, with depths

determined from the shape of the two fitted lines. Below 0.5 cycle/degree, cor-

responding to spherical harmonic degree 180, the model should not fit, since har- .

monics below 180 have been attempted to be removed by utilization of a 180x 180

reference fiqld ( the apparent existence of power below 0.5 cycle/degree is due
to errors in this reference field).

In the Ohio example, the two depth values represent the average influence

of shallow and deep sources. Considering the geology (primarily a paleozoic sedi-

mentary basin of thickness of order-of-magnitude Di), the two covariance model

constituents may be ascribed as originating primarily from sedimentary sources

and deep crustal sources, (e.g. undulations of the "conrad" discontinuity) respec-

tively. Such an interpretation should, however, be taken with great caution.

The area is so big that there is no reason to expect the geology to be so "constant"

that the layering of the crust "shines through" to the estimated power spectrum,

and also the shallow depth parameter is affected by important error sources such

as data noise and aliasing.

With the two-component description of the power spectrum, it is easy, by

simple graphical techniques, to subdivide the gravity field variation into two
parts, representing each source.

Each component is a Poisson covariance function of the form

C(s) = Co [2+ 2] (O'-2D) (5.2)

Note that with e.g. simple Poisson covariance functions, C(s) can never be negative.
However, for practical applications the covariance functions need to be modified
by removing power at the lowest wave numbers, to avoid the singularities in the
elementary functions caused by the deficiency of the planar approximation for low
wave numbers. After this "removal" negative covariances may be obtained as well.
More details in the next section.

~, **%.~ ~%. ~.-.%.......* A
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Figure 12 Empirical power spectrum for residual free-air anomalies with respect
to Rapp's 180x 180 spherical harmonic expansion. Area bounded by
latitude 380-420 N and longitude 850 to 810 W. Data points (shown
with dots) obtained from 4'x4' gridded gravity data using a 2-dimen-
sional FFT and radial smoothing.

which as earlier mentioned has the power spectrum

*g~)=2wrC D2 e- (5.3)
gg,°) 00, °iSi

Looking at Figure 12, the ratio between the two components at DC (w=0) is seen

to be around 23dB which by (5.3) results in a gravity variaiice ratio of 0.099 between

the shallow and deep components, respectively. From the total gravity variance

(153 mgal2) the r.m.s. variation of the shallow and deep components then becomes

3.7 and 11.8 mgal respectively.

5.2 Modifications to Eliminate the Influence of Low Frequencies

If one tried to estimate geoid variances for the Ohio example, one would

find that the derived variances turned out to be infinite.*) What is wrong is

that the "elementary" Poisson covariance function contains too much power at the

lowest frequencies near DC, where the planar approximation is not valid.

)The associated potential covariance function K(s) will be of form -log(D'+r),
cf. Table 1.

• °
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This is not the case for all of the covariance models of Table 1. For in-

stance the AWN model has well-behaved geoid variances even in the planar

case. On the other hand, however, the logarithmic covariance function is even

for gravity anomalies singular, since the derived covariance function C(s) does

not go to zero for large s, cf. Table 1.

There is therefore a need for modification of the simple covariance models,

so that the power at the low frequencies is suppressed. This is necessary not

only due to the singularities induced by the flat-earth approximation - it is

always needed for local covariance functions when a spherical harmonic reference

field has been removed, irrespectively of whether a flat-earth or a round-earth

formulation is used. ---

If the spherical harmonic reference field was assumed to be error-free, the

natural modification would be to truncate the "elementary" power spectra like

(5.3) below the wave number corresponding to the maximal degree of the spherical

harmonic expansion. The covariance funttion C(s) is then derived by Hankel

transformation of the truncated power spectrum, e.g. for a Poisson covariance

0g() { of (5.4)
2irCo0D , 2e'wO -W..--..

where the truncation wave number for a reference field complete to spherical

harmonic degree Xmax should be wt R &hIX
With this approach there are drawbacks: First, no simple analytical expres-

sions exist for the covariance functions, necessitating the use of e.g. numerical

integration techniques, and secondly for practical applications some energy

should be left below wt' to take into account errors in the spherical harmonic

reference field (these errors are believed to be of the same order of magnitude

as the degree-variances themselves for the higher degrees in existing 180x 180 0

solutions, see e.g. Rapp, 1981).

Relatively simple analytical expressions may

. Q 0be obtained by an approximative alternative

approach based on a pseudo-isostatic formula-

tion. Assume the density anomalies to be de-

ayer -D scribed by a white-noise layer model at depth

D, and assume that this layer is perfectly

Isostatically compensated at a deeper level

ompen- _ . D The power spectrum of this "compensated

Poisson model" will be of form

Figure 13 • -"
, %5 =
* .oo

. . . .. . . . . . . .



-. 1 - _

-31-

e-,D e-,Dc.-.

gg( W = 2ir,(e - ( (5.5)

where a is a constant. The formula follows simply from (3.2), since the spec-

trum due to the ensemble averaging theorem will have the same form as the spec-

trum of a positive/negative mass point pair. The spectrum (5.5) will be a linear

combination of three simple poisson spectra of depths D, D and Dm= (D+Dc):

-2wD -2wc -wm
g(ci) = 21rc(e '  + e 2iDc- 2e 2wDm) (5.6)
99

The power spectrum may adequately be written

g (w) = 27rae 2w(l - e' T)2, T=D-D (5.7)
99

to show more directly how the introduction of the compensating layer corresponds

to suppression of power at low wave numbers (Figure 14).

The choice of compensation depth will be dependent

on Lmax for the spherical harmonic reference ex-
pansion. For e.g. a 180 x 180 field, wt may

'.I .3ion arbitrarily be put at the point where the "com-

. .... cOmPnsoed pensated" power has dropped 3dB (i.e. half)

below the simple Poisson expression, i.e.

t.

Figure 14

•2wtD (le " tT 2 -2wtD - -.a."

0.5e (5.8) -t Rt

giving T=43 km. Thus, the use of commonly accepted "realistic" isostatic para-

meters corresponds quite closely to spherical harmonic reference fields with

Imax around 180.

The covariance function for the compensated model will like (5.6) be a linear

combination of simple Poisson covariance functions
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D ' D D'C(s) ( + -5 2- j) , '2,D'=2D D=

r , -c c 0+ c (5.9)r =-r-ff+'Zetc. ':T'

The potential covariance function K(s) corresponding to (5.9) will be (cf. Table 1)

K(s) =a (-log(D'+r) - log(D'+r ) + 2log(D'+r.))
cc m,

= o ( O+ r m ) 2  
( 5 .1 0 )

(D'+r)(O'+r)

which does not exhibit the singularities of the individual "components", the geoid

variance being

Y2 K(O) 2 log Dm2 (5.11)

The depths D and Dc are assumed to have been chosen e.g. based on a power

spectrum analysis. The constant a are then given from the gravity variance

C(0) a2  as

C(O) +(- L 1 2 i) (5.12)
D.2 D'2 D 2

which by introduction of a dimensionless "variance scaling factor" 8 yields

:i 4D2C(0)0, S = 1 (5.13)

02 D2
c Dm

The factor 8 takes into account the "lost" power at low frequencies compared to

the simple Poisson model.
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Returning to the Ohio example (Figure 12), estimates for the geoid undulations

associated with the two source components may now be found. By inspecting Figure 12,

a fairly large amount of power is seen to remain below 0.5 cycles/degree, correspon-

ding to Z=180. Therefore, to take into account also errors of the reference model,

a fairly deep compensation level D is needed. From the position of the 3 dB-pointc
a value of around 100 km seems to be reasonable.

For 0c=100 km, the a-factors for the 4.5 km and 20 km-layers are 1.01 and

1.22 respectively. Therefore the 23 dB difference on the DC-values corresponds

to the slightly different variance ratio of 0.120, yielding r.m.s. variations

for the shallow and deep components at 4.0 mgal and 11.7 mgal. Using these numbers

and (5.11) and (5.13) the r.m.s. geoid variations are then found to be 5.0 cm

and 40.5 cm, yielding a total r.m.s. geoid variation of 40.8 cm. The use of a

more shallow compensation level means that the variance estimates contain less

of the errors of the reference field. For Dc= 50 km, the r.m.s. geoid variations

thus diminish to 5.0 cm and 29.5 cm for the shallow and deep sources, corresponding

to a total variation of 29.9 cm. For a crude comparison it may be mentioned that

9 GPS-determined geoid undulations in a smaller area of central Ohio (area ex-

tent-max. 40 km) have yielded a standard deviation of the 9 points around 22

cm (number derived from undulation difference data given by Engelis et al., 1984.)

To complete the discussion of the "compensated" model, finally second order

derivatives will be considered. Since these quantities primarily are due to shallow,

high-frequency gravity field variations, little difference would be expected between

the "simple" and "compensated" Poisson model. In fact, it turns out that the scaling

factor B exactly opposes the compensation effect, yielding identical variance ex-

pressions in the two cases.

Consider first the vertical gravity gradient. The "Poisson" covariance function

of this quantity will be

G'(s) C - ) (5.14)

(cf. Table 1)., and thus the familiar horizontal gradient variance Go (Moritz 1980,

p. 177) is seen to be

Go =- G'(0) § C- -2 D (5.15)
02Z 20D2

.. .. . . . . . . . . .
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For the compensated model variance scaling yields similarly by (5.13)
r.

Go SC (.L.+- (5.16)
a 2 0COD2  D2  D2  2D02

c m

i.e. an identical expression.

In the Ohio example, the shallow and deep sources thus correspond to r.m.s.

gradient variations (,/G') of 10.9 E and 7.1 E respectively (1 E=0-mgal/m),
0

with a total r.m.s. variation of 13.0 E. This number may again be compared with

observation data. Ca. 300 torsion balance stations exist in an area of south-

western Ohio (surveyed by Badekas of O.S.U. nearly two decades ago), and for these t

stations a Y -value of c. 18 E was found (Tscherning, 1976, Figure 2a). The
0

variances compare reasonably well, especially considering the limited resolution

of the gravity data (4' grid) underlying the power spectrum plot of Figure 12.

The combined results of the Ohio example used in this section are shown

in Table 2. Deflections of the vertical follow simply from the gravity results

using the conversion factor 6.7 mgal/arcsec of section 2.1. A more thorough

3-layer analysis of part of this example area will be included in the next section.

Table 2

Two-Component Covariance Model for Ohio 40x 40 area.
.: (white noise compensated density layer representation, Rapp-180 reference field)

r.m.s. variation of

Source Depth C(O) geoid deflections free-air gravity
gravity gradient

(km) (mgal2) (W) (arcsec) (mgal) (E)

"sedimentary" 4.5 16.3 0.05 0.6 4.0 10.9

"deep crustal" 20 136.7 0.40 1.7 11.7 7.1

total 153.0 0.41 1.8 12.4 13.0

%. ~ - -... ..- . .. ____ _____ ____ ____
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6. Examples of Local Empirical Covariance Functions and Powr Spectra
In this section some examples will be given on the shape of local power

spectra and covarlance functions for gravity anomalies in selected areas of the

United States. Areas of fairly dense anomaly coverage have been chosen, in order

to get the best estimates of the power spectra so that possible "straight-line

segments" associated with major geologic interfaces would show up more clearly.

Also, areas of dense data coverage permits the degree-variances to be derived

with confidence up to high degrees, in the present study to X=5400.

The data used - free-air anomalies and terrain-corrected Bouguer anomalies -

were supplied by the National Geodetic Survey. In order to iwork with local co-

variance functions, the "Rapp-180" spherical harmonic expansion of the geopoten-

tial, complete to degree and order 180 (Rapp, 1981), has been subtracted for

all data to yield residual anomalies. Furthermore, since one of the primary

interests is in possible "geologic" effects in the power spectrum, the influence

of the topography has been removed in the mountainous areas. The elimination

of the topographic effects on the gravity anomalies has been done using a re-

sidual terrain model (RTM) reduction, where topographic irregularities relative

to a smooth mean elevation surface are computationally removed. As mean eleva-

tion surface a spherical harmonic expansion of the topography, corresponding

to the gravity expansion, has been used (Rapp, 1982).

The RTM-reduction is very convenient, since it effectively corresponds to

a removal of all topographic effects above t=180, while nothing in principle

is done below this degree (the "Rapp-180" gravity field also contains effects

of the topography). As shown in (Forsberg, 1984), the RTM reduction corresponds

usually within a fraction of a mgal to a Bouguer reduction to the reference ele-

vation level. Thus, the residual, terrain-reduced gravity anomalies used here

may be written

"c A ref - Gph (6.1)ref

= BA - B AgB - (Ag180  180)

with

Agc: RTM anomaly, corresponds to Bouguer anomalies above £-180
AgBA: Conventional, terrain-corrected Bouguer anomaly

Ag180 : Free-air anomaly of the "Rapp-180" field

h Elevation from the 180 x 180 topography expansion

8. . . ... .
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For the practical computations, Agl o and h180 were computed in a 0.25°x0.250

grid, from which values at individual stations were determined by a simple bi-

linear interpolation scheme.

Gravity anomalies for four different areas have been investigated. These

areas will in the sequel be designated by the name of the state inside which

they are located:

"OHIO": 2°x2 ° lowland/moderately hilly area SW of Columbus,
lat.' 380-40°N, Ion. 85°-83°W (not identical to the Ohio
example of the last section).

"COLORADO": 2°x2 0 alpine area of the Rocky Mountains, W of Denver
and Colorado Springs, lat. 380-40° N, lon. 107°-105° W.

"CALIFORNIA": 2°x2* mixed area, containing the central parts of the
Sierra Nevada mountains and a part of the California valley,
lat. 360-380 N, lon. 120°-118 ° N.

"NEW MEXICO": 4°x 4 mountainous area, covering most of New Mexico,
including the "White Sands" area. lat. 320-360 N, Ion.
1090-1050 W.

Except for New Mexico, these areas represent new, more detailed investigations

than the results previously presented (in a somewhat different context) in Forsberg

(1984). The 20x 2° areas have been chosen to secure a sufficiently dense coverage

of gravity anomalies, to allow a fairly dense grid (2'x 2.5') of gravity anomalies

to be predicted. An example of the data coverage is shown in Figure 15.

The gridding procedure and analysis were similar to the method of Forsberg

(1984). First, gravity anomalies were screened, keeping only one anomaly per

1'xi' "pixel". The screened anomalies were then gridded to a 2'x2.5' (-3.7x3.6 km)

grid using a truncated collocation algorithm, where a grid point value is predicted

from the five closest observations only. The dense prediction grid necessitates

some caution when interpreting results for higher wave numbers: Although the

data coverage for the areas is fairly dense, it is evident from Figure 15 that

the data might be too sparse in parts of the areas, yielding some influence of

the grid prediction method on the shape of the power spectrum at high wave numbers.

From the gridded RTM gravity anomalies power spectra, covariance functions

and degree variances were constructed using the two-dimensional Fast Fourier .-.

Transform (FFT). The power spectrum is obtained from the Fourier transform by

ogg(u, v) = 1A(u, V) 2  (6.2)9.9::::

% -..
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LONGITUDE .
240 241 242

38

-: Figure 15 Gravity data coverage
in the 20x20 area of California.

S- The California valley is to the
lower left, while the Sierra Nevada
mountains run approximately NW-SE
Vx ' pixels contain gravity

..........
[ - " ...... .:
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1 -)2 c 27r 1 -1)2  9 R:'

I. The spectrum &j estimated using the fast Fourier transform will be affected -

,.:. by errors due to the finite extent of the area in question, and some suitable":

" window filter should ordinarily be used. In the present investigation, however,

i :,..:. . . ... ..,- , -.-v, _... -,:,.:,,:;...',.,,, - :-,'-. ', -_-
0.- -.
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windowing turned out to be a disadvantage due to the unavoidable loss of power

in the spectrum - and through the radial averaging procedure already some smoothing

is done. Window filters have therefore not been applied here, resulting in somewhat p..

"wiggling" spectra.

Results for the 20x 2* areas are shown in Figures 16-18. Each figure shows

from top to bottom graphs of at, 0gg(w) and C(s) shown with a thick, solid line.

The degree variances a are normalized and shown logarithmic, with the global .

degree-variance models of Kaula (3.35) and Tscherning-Rapp (3.36) also shown

for comparison purposes. The power spectrum is shown logarithmic in

dB (dB=10 lOglogg), with unit (0 dB) 1 mgal 2degree 2. Wave numbers are shown

in cycles/degree (t), with maximum 15 cycles/degree being the Nyquist frequency

for a 2' data grid. With broken lines are shown arbitrary tentative straight-line

segments, with depth D determined from the slope of the line. Finally, the covariance

function C(s) is shown in units of mgal 2. For reference purposes, the covariance

function has been fitted with Moritz' two "basic" planar covariance functions

(3.36) and (3.27): the reciprocal distance covariance (R) and the Poisson covariance

(P), shown with thin line also in the power spectrum plot. The covariance functions

* were fitted simply by requiring variance Co and correlation length x to match

the empirical values. To illustrate possible anisotropy, the central part of

the two-dimensional covariance function C(x, y) is shown as a contour plot to

the right, with a contour interval of 0.2 Co. For a perfectly isotropic process

this plot would show a series of concentric circles.

(The corresponding plot of the New Mexico area, derived from a more coarse

4'x5' anomaly grid, may be found in (Forsberg, 1984, Figure 34)).

Inspection of the power spectra shows that straight-line segments are not

very conspicius. Indeed the spectra seems to be of more or less the same overall

shape. The depths assigned to various parts of the power spectra in the plots

must be viewed with great caution, since they are characterized by very large
uncertainties. Especially for the higher wave numbers error sources due to the

gridding, aliasing, and errors in the anomalies and terrain reductions play quite

a substantial role in shaping the spectrum. The influence of random, uncorrelated

errors in the grid points may be ascertained fairly easily using Parseval's equa-
tion (2.16): Viewing the errors as bandlimited white noise (in a frequency square

of side length 2x15 cycles/degree), it follows that an error variance of 1 mgal 2

corresponds to -30 dB in Figures 16-18. Thus e.g. the tail "d- I km" of the

Colorado spectrum (Figure 17) may be explained alternatively as the effect of

uncorrelated gravity grid errors of variance 16 mgal 2 (- -18 dB in the plot), not

too unrealistic considering the extreme alpine topography of the area.

...........................*t.~.4.~t .*****.**. .. *. . . . ..
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The geophysical significance of the indicated depth values is probably limited,

the depth values possibly representing merely tendencies to enhanced density vari-

ations at certain depth ranges rather than undulations of some density contrast 0
interface. The lack of clear "layering" in the power spectrum is as earlier men-

tioned typical of gravity problems, opposed to many magnetic examples. The sources

of the gravity field variations (besides the topography) tends to be distributed

throughout the crust and upper mantle, in a random fashion quite similar for many "-

different types of geologic settings.

Irrespectively of the geophysical interpretation of the indicated depths,

they may be used to provide improved multi-layer local covariance functions of - -L

the gravity field in the respective areas. For each of the four different areas

three depth values have been selected as outlined in the figures, and a total

covariance function is built up by using compensated Poisson models at each of

the specified depths. This gives three unknowns - the variance associated with

each layer - but since the total variance is given from the data, only two free

parameters are left. In addition also the compensation depth DC may be varied,

especially in order to model the apparent power left below degree 180, originating
in deficiencies in the used spherical harmonic expansions of the gravity field

and the topography.

The covariance models have in the present study been fitted to the power

spectra using a simple interactive ad hoc technique, utilizing a graphical terminal.

Each fitted power spectrum is of form (5.6)

3
-2w~i 2-2-.-Di+Dc

0 gg(w) 27r ci(e " wDi + e-wDc 2e"w i+Dc) (6.5)

where ai is transformed to a gravity component variance C1 by (5.12). Given the

variances C i the geoid undulation variance and gravity gradient variance are sub-

sequently found by (5.11) and (5.16). The results are shown in Table 3 and Figure 19.

The covariance functions of Table 3 are examples of "tailored" covariance
functions, applicable e.g. for optimal error studies, simulations etc. Since

they have a good fit in the entire spectral range, they will be good both for geoid

and second order derivative applications. The models show clearly the general

feeling of gravity field variations: the geoid is sensitive to deep density vari-
ations, while second-order gradients primarily reflect shallow sources. Comparing

;I.;'. i .-..: . a.. ..... ... . ,. . .: . .. . -- *, .. .. . . ,. . . . .. . . . . .. . . . . . . ?"- .
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Table 3

3-Layer Compensated White Noise Density Variance Models
for Residual Gravity in Sample Areas of the United States
(Topography Removed by RTM-Reduction, Except for Ohio)

r.m.s. variation of -

Area Layer Gravity geoid gravity horizontal
Location Depth Variance undulations anomalies gray. gradient

(kin) (mgal2) (m) (mgal) (E)

2 13.3 0.02 3.6 22.3

OHIO 4.5 18.6 0.04 4.3 11.7

20 210.3 0.37 14.5 8.9

(Dc=50 km) total 242.1 0.38 15.6 26.7

1 26.1 0.02 5.1 62.6

COLORADO 3.3 24.0 0.05 4.9 18.2

16 322.8 0.54 18.0 13.8

(Dc=lO0 km) total 373.0 0.54 19.3 66.6

2 30.8 0.04 5.5 34.0 --

CALIFORNIA 4 46.4 0.08 6.8 20.9

26 1148.8 1.37 33.9 16.0

(Dc=100 km) total 1226.0 1.37 35.0 42.9

2.5 22.9 0.04 4.8 23.4

NEW MEXICO 12 62.6 0.20 7.9 8.1

40 112.4 0.55 10.6 3.2

(Dc=100 km) total 197.8 0.58 14.1 25.0:-:'-

So..

,S .-.
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With the apparent quite high similarity between the various power spectra,

it is naturally then to ask the question: What is the "best" overall shape of

the covariance functions in terms of the "simple" covariance models? As earlier
stated, this is in general believed to be the logarithmic class of the covariance

functions. That this is indeed the case may be seen from Figure 20, showing the

derived degree variances on a double logarithmic plot, power functions t-2, t-3

and 1-4 have additionally been plotted for reference purposes. Remembering the

asymptotic forms of some of the "elementary" covariance functions of Table 1.

poisson : -1

reciprocal distance: a z-2

logarithmic : t -3

it is clear that the logarithmic types should be preferred in general. The simple

planar logarithmic covariance function of Table I is singular, so modifications

analagous to the compensated Poisson model will be needed to eliminate the influence

of the low wave numbers. Alternatively, the well-known spherical Tscherning-Rapp

model (3.36) may be used, with adaption to local applications obtained through

a change in variance factor, Bjerhammar sphere depth and removal of lower degree-

variances corresponding to the spherical harmonic reference field.

The degree variances of Figure 20 are seen to be systematically too low ,4f-

pared to Kaula's rule for the higher degrees. Kaula's rule represents a kind
of global average of the actual gravity field variation, including the effects

of the topography.

For a valid comparison, the topographic effects must therefore not be removed

from the basic gravity grid used. In Figure 21 are shown the corresponding em-

pirical degree variances for unreduced gravity data, i.e. free-air anomalies,

derived from the gridded Bouguer anomalies by an inverse Bouguer reduction using -

elevations from detailed (0.5'xO.5') digital terrain models of the areas. Now

the spread in the degree variances is much larger, reflecting the differences

in terrain. The logarithmic asymptotic behaviour is still clear, and now Kaula's
rule performs somewhat better, indicating e.g. that New Mexico is a quite typical

area on a global basis.

The logarithmic nature of empirical gravity field covariance functions may

be used for some general implications on the possible types of density distributions.

If we e.g. accept the stationary thin-layered earth model, where the earth was

described by a number of thin, independent layers, the total power spectrum was

found in section (3.2) to be of form

% %o
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Figure 20 Empirical degree-variances for the gravity field variation in 4 U.S.
sample areas. Topographic effects have been removed by an RTM-reduction
corresponding to the used 180 x180 spherical harmonic reference field
(except for Ohio). Kaula's rule (3.35) shown as center broken line.
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p(W) p(2-z (w) e (6.6)

where Az is the layer thickness, di the depth and i the density power spectrum

of the layer. The form of the power spectrum for infinitely thin layers will thus be

$gg(W) " *' (; z)e'Zdz (6.7)

If the layers are assumed to be identical, a logarithmic power spectrum (i.e.,
S(W) W-2) requires

* ) (6.8)

i.e. a red noise distribution, where density anomalies of large spatial extent

are on the average of bigger magnitude than the density features of less extent,

a quite reasonable statistical model rather than the "strong" white noise assumption.

If, on the other hand, the concept of white-noise density layers is maintained, -

it then follows that the density variance a2 must be given by an inverse Laplace0

transform

-2w.

1#

(gg () - f' o2(z)ezZdz (6.9)
0 P

yielding

a2(z)- z (6.10)
P

i.e., the density anomaly variance increases linearly with depth, a very unphysical

result considering our general ideas of the earth's interior.

-.-.. .-p -.* -
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7. Summary and Conclusions

In the present report various topics relating to covariance functions and

density distributions have been treated. Emphasis has been on local covariance

functions, where a high degree and order spherical harmonic reference field are

substracted prior to modelling and analysis. By working with the residual field,

a number of simplifying assumptions may be used, such as the flat earth formulation

and the identification of gravity anomalies with gravity disturbances. With

these assumptions it was e.g. shown how collocation may be interpreted in a very

simple fashion in terms of generalized point mass modelling.

Apart from the collocation interpetation, the various topics of the present

report may be generalized easily using a spherical earth formulation. An example

(which actually was part of the inspiration for the work of the present report)

may be found in Sunkel (1981), who considersthe white noise density layer covari-

ances on a strictly spherical basis. For local applications, however, spherical

results follow much more easily by the simple relationship existing between the

planar power spectrum and the spherical harmonic degree variances.

This relationship was elaborated upon in Section 2, in addition to the most

basic description needed for using the planar formulation.

In Section 3 then the relationship between the well known covariance functions

(Poisson, Logarithmic etc.) and "mass bodies" characterized by white-noise distribu-

tions of density anomalies, dipole moments etc., were derived using the ensemble

averaging theorem, well known to geophysicists as the method of Spector and Grant

(1970). The use of the theorem opens in principle for a direct link between

the shape of the power spectrum (and thus the covariance function) and depth

to "disturbing" interfaces in the earth's interior.

The simple covariance functions, described e.g. as generated by a white-noise

density layer, vertical mass lines etc., turned out to be themselves expressable

as "gravity" effects of similar (but not the same) bodies, only at the double

depth. This was used for the side remark in Section 4, the collocation interpreta-

tion. It was e.g. found simply that collocation, using the Poisson covariance

function corresponds to a point mass modelling, where a point mass should be

located below each gravity observation,a vertical mass line below each geoid

observation point etc., at depths two times the depth to the Bjerhammar sphere.

For practical local covariance functions, in accordance with geologically

reasonable density distributions, multi-layer models of independent density vari-

ations will be necessary, corresponding to different BJerhammar sphere depths

for the different constituents. In Section 5 especially the multi-layer Poisson

%J*%
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model was treated in some detail, and a modification based on a pseudo-isostatically
"compensated white noise density" model was proposed to model the low frequency

behaviour of the residual gravity field more properly. It turned out that with

a perfect 180x 180 spherical harmonic reference field, the "optimum" compensation

level was only slightly deeper than the commonly accepted compensation depths

of Airy isostasy. The expressions for the covariances etc. of the compensated

model turned out to be very simple, since the formulas were obtained as a simple

linear combination of the original Poisson formulas.

Finally, in Section 6, actual power spectra for the various sample areas

were analyzed, with the primary object to detect the existence of possible dis-

turbing interfaces. The geophysical significance of the results turned out to be

questionable, an experience obtained by many geophysicists having tried to use

statistical interpretation techniques for gravity anomalies. However, the in-

ferred layer parameters are very useful in providing optimal "tailored" covari-

ance models, and numerical values for such models were given for the different

sample areas, and illustrated by providing statistics for the geoid and second

order gradient variances.

Forgetting the multi-layer models, the overall shape of the covariance func-

tion turned out to be logarithmic, with degree variances decaying like Z-3 up

to at least degree 5400. Kaula's rule turned out to be quite realistic for the

"actual" gravity field, while the power was significantly too high when terrain-

reduced data were used.

Although the statistical "covariance interpretation" techniques have not

too bright prospects, I think it could be of interest for future studies to take

more sample areas, especially areas in geologic settings where a "white-noise

layer" description would be expected to have some validity, e.g. for describing

undulations in salt/sediment interfaces in salt dome provinces (like e.g. the
Gulf coast of Texas or northern Jutland, Denmark). In such cases important in-

formation on the very local variability and stationarity of the "detailed" co-
variance functions could additionally be derived. A prerequisite for such studies * '
would be a very dense gravity coverage, combined with power spectrum estimation

techniques yielding reliable estimates even for small sample areas, inside which

the "layering" assumption is reasonably valid.
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